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Outline

• Model Equations For Variably Saturated Flow
(Richards Equation).

• Iterative Methods for Obtaining the Steady-State
Solutions.

• Test Problems and Computational Results.



Richards Equation

Find p : Ω× I → R such that

∂ [m(p)]

∂ t
= −∇ · [K(p)∇p+g(p)]

subject to boundary and initial conditions

p = pd (x, t) ∈ ∂Ωd × I
(K(p)∇p+g(p)) ·η = un (x, t) ∈ ∂Ωn × I

p(x,0) = p0 x ∈ Ω



Nonlinearities
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• ∂m

∂ p = 0,∞ and is discontinuous.

• ∂K

∂ p = 0,∞ and is discontinuous.

• limp→−∞ K(p) = 0.



Fully Discrete Equations

• Spatial Discretization + Backward Euler yields
numerical solution at tn+1 = tn +∆t:

F̂(Pn+1)=
1
∆t

M(Pn+1)−
1
∆t

Mn−D(Pn+1)Pn+1−G(Pn+1)= 0

• Or for the steady state we have

F(P) = −D(P)P−G(P) = 0



Steady-State Iterations

• Pc = current iterate; P+ = next iterate.

• Fixed Point Iteration (Picard Iteration):

P+ = −D−1(Pc)G(Pc)

= Pc − [−D−1(Pc)]F(Pc)

• Newton’s Method:

P+ = Pc −F
′−1(Pc)F(Pc)

= Pc − [−D(Pc)−D′(Pc)−G′(Pc)]
−1F(Pc)



Pseudo-Transient Continuation

• Start with Newton’s method for Backward Euler

Pn+1
+ = Pn+1

c − F̂
′−1(Pn+1

c )F̂(Pn+1
c )

• If Pn+1
c = Pn the first iterate is

P+ = Pc − [
1
∆t

M′(Pc)+F ′(Pc)]
−1F(Pc)

• As ∆t → ∞ this iteration approaches the steady-state
Newton iteration.

• Otherwise it is a conditionally stable time integration
method for the time-dependent problem (Rosenbrock
1963).



Pseudo-Transient Continuation,cont’d

• Pseudo-Transient Continuation consists of the
Rosenbrock method + an adaptive selection of ∆t such
that ∆t → ∞ as F → 0.
1. Switched Evolution Relaxation (SER):

∆t+ =
‖F+‖2

‖Fc‖2
∆tc

2. Temporal Truncation Error (TTE): Choose ∆t+ such
that

|
(∆t+)2

2(1+ |Mc,i|)

∂ 2Mc,i

∂ t2 | < τ i = 0, . . . ,N

where i is the nodal index and ∂ 2Mc,i

∂ t2 is
approximated.



Steady State Iterations: Review

• Picard
P+ = Pc − [−D−1(Pc)]F(Pc)

• Newton

P+ = Pc − [−D(Pc)−D′(Pc)−G′(Pc)]
−1F(Pc)

• Ψtc

P+ = Pc − [
1
∆t

M′(Pc)−D(Pc)−D′(Pc)−G′(Pc)]
−1F(Pc)



Variations/Globalization

• Newton-Picard

P+ = Pc − [−D(Pc)−λnp(D′(Pc)+G′(Pc))]
−1F(Pc)

λnp → 1 as F → 0

• Damped Newton (line search)

P+ = Pc −λls[−D(Pc)−D′(Pc)−G′(Pc)]
−1F(Pc)

λls → 1 as F → 0



Theoretical Game Plan

• Use “Global” facts to ensure that we get into the region
of Newton convergence.

• Picard-Newton: D−1F is a contraction therefore {Pn}
converges to the unique fixed point.

• Damped-Newton: Every bounded sequence in R
n has

a convergent subsequence, and once we’re in the
Newton ball we have to stay there.

• Ψtc : The time-dependent problem has a stable steady
state, and the integration method is stable for the {∆tn}.



Test Problems

• 1D and 2D infiltration problems.

• The reference solution was an accurate time
integration to steady-state using BDF methods.

• We compared Picard-Newton,Damped Newton, and
Ψtc (TTE and SER).

• The switching criterion for Picard-Newton was
‖Fc‖ ≤ .01‖F0‖.

• The damped Newton used an Armijo linesearch based
on a quadratic model.

• We tested LU, ILU-BiCGstab, and Two-Level Hybrid
Additive Schwarz-BiCGstab.



1D Test Problem
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Initial Conditions (left); Solution (right)



Residual History
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Results

Jeval Feval Steps NLI NLF LI LF LS Clock

ne = 41

NILS 30 299 30 30 0 0 0 102 0.05

PIH 14 33 14 14 0 0 0 1 0.01

TTE 51 103 51 0 0 0 0 0 0.06

SER 83 167 83 0 0 0 0 0 0.04

ne = 161

NILS 25 329 25 25 0 0 0 128 0.08

PIH 16 35 16 16 0 0 0 0 0.06

TTE 207 410 202 0 0 0 0 0 1.43

SER 353 705 351 0 0 0 0 0 0.33



2D Test Problem
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Residual History
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Results

ne Jeval Feval Steps LI LF LS Clock

LU-PP

TTE 11×11 114 229 114 114 0 0 1.57

TTE 21×21 127 255 127 127 0 0 2.96

TTE 41×41 125 250 124 125 0 0 8.16

TTE 81×81 146 281 134 146 0 0 58

TTE 161×161 248 458 209 248 0 0 667.07

NILS 161×161 232 12961 233 232 0 6043 429.58

BiCGstab-HAS

TTE 11×11 115 231 115 979 0 0 1.86

TTE 21×21 125 251 125 2173 0 0 4.28

TTE 41×41 131 262 130 3782 0 0 18.17

TTE 81×81 152 288 135 7192 0 0 131.9

TTE 161×161 283 472 188 20806 0 0 1386.07

NILS 161×161 236 13153 237 70484 0 6130 3397



Conclusions

• When they work, Damped Newton and Newton-Picard
are very fast.

• Ill-conditioning of D (or F ′) can be a source of trouble.

• Ψtc is more robust with respect to
ill-conditioning–apparently because of the addition of a
1/∆t term to the diagonal.

• In practice Ψtc with TTE is violating the assumptions of
the theory behind Ψtc (∆t is unstable), but it works
anyway as long as we bracket.
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